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Five density functionals including GGA (generalized gradient
approximation) (BP86), meta-GGA (TPSS), hybrid meta-GGA
(TPSSh), hybrid (B3LYP), and double-hybrid functionals (B2PLYP)
were calibrated for the prediction of ’Fe M&ssbauer isomer shifts
on a set of 20 iron-containing molecules. The influence of scalar
relativistic effects and the basis set dependence of the predictions
were investigated.

Mossbauer (MB) spectroscopy has become one of the most
important analytical tools in the field of (bio)inorganic iron
chemistry. This is due to the high importance of iron for all
forms of life! and the rapidly increasing popularity of iron
in catalysis.” In combination with rapid freeze quenching,
MB spectroscopy provides a very powerful spectroscopic
approach to the analysis of short-lived intermediates.** The
two primary parameters that can be obtained from a MB
spectrum of a given iron center are the isomer shift (IS) and
the quadrupole splitting.> As shown by decades of experi-
ence, these two parameters are closely related to the electron-
density distribution. In particular, the IS is known to be
directly proportional to the total electron density at the iron
nucleus.

During the past 6 years, it has become evident that density
functional theory provides a reliable tool for the prediction
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and interpretation of MB ISs.°”® An elegant linear response
theory for this property has recently been proposed by
Filatov.” Various workers have established an excellent
linearity between nonrelativisitic and also relativistic electron
densities at the iron nucleus and the observed 1Ss.% 7%
These calibration curves have shown a remarkable robustness
in the sense that no significant dependence of the calibration
constants on the oxidation state, spin state, or coordination
number of the iron has been detected. However, owing to
basis set incompleteness errors and shortcomings of present
day density functionals, the correlation has to be established
for each combination of functional and basis set. Previously,
it was speculated that this requires special basis sets with
added flexibility in the core region.® Later studies have
speculated that this might not be the case and that standard
basis sets that typically only include a single basis function
for each core orbital already provide adequate accuracy.'6%f
The present work therefore has the triple purpose of (a)
recalibrating the two most widely used GGA (BP86”) and
hybrid (B3LYP'?) functionals for use with the standard
triple- basis set of Ahlrichs and co-workers (TZVP),!! (b)
extending the calibration to the case of scalar relativistic
corrections provided by the ZORA'? method using recently
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Table 1. Linear Fit Data for ¥ ’Fe MB IS Predictions Using the Linear
Equation 6 = a(p — C) + f8

functional basis a B C R>  std dev (mm/s)
BP86 CP(PPP) —0.425 7916 11810 0.95 0.11
TZVP —0.340 1.034 11580 0.93 0.12
TZVP® —0.362 4.957 13800 0.92 0.12
B3LYP CP(PPP) —0.366 2.852 11810 0.98 0.09
TZVP —0.298 1.118 11580 0.94 0.11
TZVP* —0.307 4.045 13770 0.97 0.08
TPSS CP(PPP) —0.421 5.154 11810 0.96 0.10
TZVP —0.336 1.327 11580 0.90 0.14
TZVP* —0.365 1.385 13800 0.94 0.10
TPSSh CP(PPP) —0.376 4.130 11810 0.97 0.08
TZVP —0.321 1.466 11580 0.96 0.10
TZVP® —0.322 1.830 13780 0.97 0.08
B2PLYP CP(PPP) —0.336 2.642 11810 0.97 0.09
TZVP —0.261 1.483 11580 0.84 0.12
TZVP® —0.311 2.256 13790 0.97 0.08

“ ZORA recontracted basis sets.

reported recontracted all-electron relativistic basis sets'> and,
most importantly, (c) calibrating the newly emerging classes
of meta-GGA (TPSS'¥), hybrid meta-GGA (TPSSh'®), and
perturbatively corrected double-hybrid (DHDF) functionals
(B2PLYP'®) for use in MB spectroscopy. The theory of first-
order properties in the framework of DHDFs has recently
been developed and successfully applied.'® Presently, these
functionals offer unprecedented accuracy in the calculation
of thermodynamic,'®*" kinetic,'®**" and structural'®® pa-
rameters as well as excitation energies.'®

Table 1 shows a comparison of the R? values, which are
measures for the quality of a given linear fit, and the actual
fit data for the different levels of theory and sizes of basis
sets.!” Consistent with previous results,?° the hybrid density
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functionals B3LYP and TPSSh yield linear fits of superior
quality compared to the pure density functionals BP86 and
TPSS. Similarly, excellent results are obtained with the
DHDF B2PLYP. Note, however, that with the relatively
small TZVP basis set for the iron atom, the linear fit obtained
by the B2PLYP functional, is of rather low quality. This
finding is probably due to the strong intrinsic basis set
dependence of the perturbative second-order contributions
to the correlation part. A common result for all five density
functionals is the substantial improvement of the linear fits
when the enlarged CP(PPP) basis set® for the iron atom is
used. Hence, the limited additional computational effort for
the larger basis set is justified. We have carefully verified
that further enlargement of the basis set by additional
polarization functions neither changes the fit parameters nor
leads to improved results. Calculations using the ZORA
Hamiltonian and recontracted all-electron relativistic basis
sets provide clear improvements over the nonrelativistic
TZVP results. However, after careful study of this subject,
it was found that these improvements can be traced back to
the increased flexibility of the recontracted basis sets in the
semicore and valence regions rather than to the scalar
relativistic corrections themselves (cf. the Supporting Infor-
mation).22 As pointed out earlier, this is rationalized by the
finding that the contributions of the 1s and 2s core orbitals
to the electron densities at the iron nucleus are to a very
good approximation constant throughout iron chemistry.**®

To the best of our knowledge, the current work provides
the most complete list of calibration constants for a larger
range of modern functionals and basis sets, although similar
standard deviations have been reported previously.®d~""-®
Taken together, the present work enables researchers to
obtain excellent predictions for MB ISs. An even wider use
of this stable, reliable, and efficient method to many problems
in iron chemistry is anticipated.
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